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ON THE STABILITY OF RANDOMLY SAMPLED SYSTEMS

Abstract

Rahdomly sampled linear systems with linear or non-linear
feedback loops are studied by a stochastic Liapunov fﬁnction method.,
The input, in this paper, is assumed zero (driven systems will be
treated in a companion paper), Improved criteria for stability
(with probability one, on sth moment s > 1, or in mean square)
are given, when the sequence of holding times are independent. The
method is relatively straightforward to apply (especially in
comparison with the direct methods), and allows the study with non-
liﬁear feedback, or non-stationary holding times. A randomly
sampled Lure problem is studied. Numerical results, describing

some interesting phenomena (such as jitter stabilized systems) are

presehted.

1. TIntroduction

The paper is concerned with systems of the type of Fig. 1,
where c¢ is a row vector, X = Ax is assumed to be asymptotically
stable, and f(+) may be either a linear or non-linear element., The
cagse of scalar valued f and u is of main interest, although the
method is obviously usable when f and u are vector valued. The

sampler samples at a sequence of random times Tl,...,Tn,... and

the holding intervals Ah, i+l

defined by Ah = T - Tn are assumed to be



mutually independent. The input u may be random., In ﬁhis paper,
however, u will 5e assumed to be zero. Results for the 'driven'
system - concerning ergodicity of the outpﬁts (for ergodic u), re-
currence properties, and estimates of the moments of the output, will
appear in a companion paper. Conditions on A,B,f and {An}
under which various stability properties hold, ere obtained.,
Numerical results, illustrating some properties of interest are al-
80 presented. There has been a fair amount of work’on such sampling
systems [1] - [h]. The problem occurs in several physical situations -
perhaps especially in sampling for digital-analog conversion where
some random jitter is involved,

Past work, e.g. [2], has generally dealt with specific,
and relatively simple (often scalar with linear f) cases, and has
involved (even for scalar cases with linear f) gquite direct and
very tedlous calculations. 1In this paper, an approach based on the
idea of a stochastic Liapunov function [5] - [T7] is taken. All re-
sults on the system of Fig. 1 that were available (as known to the
- authors) can be obtained much more easily, and a number of easy ex-
tensions to the conditions for stability ere given. Furthermore,
non-linear f (see, €.8., the randomly sampled Lure'problem of
Section M) can sometimes be treated, and path excursion probabil-
ities and moment estimates obtained and probability are convergence

as well as convergence in certain moments can be studied. In addition,



it is not necessary that the Ai be identically distributed. Also,
as common to Liapunov-function-like methods, perturbation results

are also possible. E.g., if a system has a certain type of stability,
then so will a slightly perturbed system. Furthermore (as will
appear) the estimates (except for ergodicity) for driven systems

usually do not even require stationarity of the inputs.

2, Stability Theorems

Let u = 0. From Fig. 1,

X = Ax - KBf(cx(Tn))u for T ., >%t 2z 7. (1)
Let x , denote x(T_). Then
n n
AAn AAn AN As
X ,1=¢ X -e g e dSKBf(cxn)
An -1 n
=e "x +A7(le )KBF (ex ) (@)

il

FX + an(cxn),

where the (Fn’Gn) are independent in n, If X, is independent
of {Ah}’ then the seguence {xn} is easily verified to be a

(discrete time) Markov process. The following stability lemma will



be central to the development of the sequel.

Lemma 1, (For proof see [8] or [7].) Let (Y} bea

Markov process, and V(Y) a non-negative function. Suppose that

EV(Y, ;) - V(¥) = -k(¥) = 0 (3)

(wvhere E, is the expectation given that Y = Y). Then the

sequence [V(Yn)} is a non-negative super martingale and there is a

Vz O so that V(Yn) -V w.p.l. (with probability one), and

Pl sup V(Y) =z €} = V(Y)/e i
Y >nz0 n) )/ )

(where Py, is the probability given that Y = Y). Also

0
By L k(Y ) £ V(Y) end k(Yn) -0 w.p.l. (The last statement (k(Yn)-a 0)
= == :

is merely the Borel-Cantelli Lemma. See [7, p. 71]1.)

Lemma 2, Suppose the conditions of Lemma 1, except that

EgV(Y ) - V(Y) £ - W(¥), v>o. %)

Theni

Py{ iypo V(Yﬁ) (1-) " 2 ¢) = V(Y)/e
oa>NZ

TNote that V(Y) 2 O implies that 1 s L.



and.
n
BV(Y,)/(1-1y)" =0 where O<y <7.

Proof, The proof is similar to that of [T], Theorem 3,
p. 86. It is readily verified that V(x,n) = V(¥) /(1-v,)" end
V(X,n) = V(Y)/ (- are (time-dependent) non-negative super-martin-

gales. The lemma then follows from Lemma 1; in particular

P sup V(Y- 2z §= Pl sup V(Y,n) & €} = V(T,0)/e = V(¥)/e
o>n=0 a>nz0
Q.E.D.

Next, the case of linear f is treated. Let f(a) = «

(without loss of generality). Then

Aéh -1 AAh
e = A A =e + A 7(1-e T)KBC. (6)

Theorem 1, Supposé that there is a non-negative function

0. Then the conolﬁsions

1A

V(x) such that EXV(Xn+l) - V(x) = -k(x)

of Lemmas 1 and 2 hold for Yﬁ = X .

3. Linear Peedback

Example 1, Consider the scalar linear system, where



' ~a/\
X= -ax+Ke, B=c=1. Then A = [(1+K/a)e © - K/a], a > O.

Let V(x) = |x|® for some s > 0. Then

7

s s 25 s s :
Elx 17 - I1x]7 = B{] (1+K/a)e - K/a]” - 1}]x|". (7)

By Theorem 1, a sufficient condition for ]xn] -0 w.p.l., and
E]xnls -0 is that

| -8\
1 - E| (1+K/a)e ™ -x/a]® = v > o. (8)

Via a more tedious direct method, Leneman [2] succeeded only in
showing that (8) is sufficient for 8‘xn]2 -0 for s=2, (In
fact, it is worth.repeating that, if one is interested in w.p.l.
convergence, the conditions for mean square stability are not
necessary.) (8) is an improvement over the available result, since,
as s -0, thé range of K for which (8) holds increases. Note
also that it is EEP reéuired that either K or the value of a

be constant, nér that the Ah be identically distributed. This

illustrates another advantage over the direct method. Also by

Lemma 2, (where O< y <1 is defined by (8))

P {swp |x[°(1-"2 e®} = |x|%/e (9)
*apnzo O



Intersample Behavior for Example 1., Between samples,

. . > >
for random t  satisfying T 1 2 t =z Ty

—a(t-Tn)

X, = [ (1+K/a)e - K/a,]xT .

n
Thus, there is some real M so that for any non-random t, [Xt] <
M1Xn(t)l? where n(t) is the T immediately preceeding the fixed

t. It will be shown that for any € > 0 there is a set of paths

of probability =z 1 - € so that IXn(t)! < ¢ for sufficiently large t,
for this set; this will imply that |x | -0 w.p.1l. To prove the
assertion, note that, since {Xn[ -0 w.p.l., for any e > 0 there

is an N and a set of paths of probability = 1 - e/2 so that for

these paths [Xn[ < e for nz N. To complete the demonstration
note that, since, for any finite N,

P{Ai+"'+AN <T}=»>1 as T o,
there is a T { o so that

P(at least N occurrences of sampling by time T} z 1 - €/2.

Observe that the arguement does not require that the Ah

be identically distributed.



n Dimensional Linear Systems. Useful Liapunov functions

other -than quadratic forms or functions of quadratic forms have not
been found for the n-dimensional problem, Nevertheless, some useful
results can be obtained - especially by comparison with direct

methods of calculation.

Theorem 2, Suppose that there are positive definite

symmetric matrices P and C so that EAx'lPAn - P= -C., Then

xn -0 w.p.l., and xJG -0 w.p.l., There is some 1>y >0 s0

that

P { sup x!'Px (l—y)—n z €} s x"Px/e. (10)
x nn
o>nz0

If the Ah are identically distributed, then the existence of such

a P and C are necessary as well as sufficient for mean square

2
stability (i.e., for Exn - 0). Let the- Ah be identically dis-

tributed., TLet the n2 dimensional vectors & and ¥ denote

- the vectors containing the elements of P and C and write the

linear operation (on P) FAPA - P= -C as AP - P = -%. Then a

necessary and sufficient condition fdr mean square stability (and

sufficient for w.p.l. stability) is that the eigenvalues of o/ are

inside the unit circle.

(Note that, by symmetry of P,C, the vectors P, ¢



need only be n(m+l)/2 dimensional. Also, the last statement also

follows from the tKronecker Product' method, see [3], [9].)

Proof. Let V(x) = x'Px. Then EXV(xn+l) - V() =
x'[EAﬁPAn - P]x = -x'Cx, and the first assertion follows from
Theorem 1, Equation (10) follows from Lemma 2 since, for some
¥ >0, C>yP in the sense that C - yP is positive definite.
Now let Ah be identically distributed. Suppose {x;} is mean
square stable; thus E[xnl2 — 0 exponentially [9]. DNow given C

positive definite, the matrix P defined by

(=]
X'PX = E 2. X'0X < o
Xo n n

— { 1 e o9
P=2C+ EAiGAl + EAlAéCA2A1+

1

yields a sultable Iiapunov function - hence the first necessary

condition.

From what has been said,'it is clear that mean square

s s - - _ wAr . _
stability implies that the iterationl P _ . EA'P A+ C (with P c)

is convergent for any matrix C. Since this is equivalent to an

iteration of the type 5?%+l = ;ygan-k ¥, the 5%1 must con-

‘verge for any vector ¥. Hence the eigenvalues of &/ must be

ingide the unit circle. TIn any. case, the convergence of Xt Ato

zero w.p.l. is proved exactly as for the scalar case, and the



10
details will not be repeated., Q.E.D,

Numerical Data, To use Theorem 2, one must choose P,

then tést the function x'Px., Suppose the system (6) is asymptoti-
cally stable with no jitter, i.e., when Ah = A, a real number.

Then write Ah = AZ; There is a quadratic Liapunov function =x'Px
for the system X 1= AAFn’ and the use of this Liapunov function,
in the pfesence of jitter, yields some useful bounds on the jitter
with which stability is guaranteed. In fact, the following pro-
cedure was used. Fix the gain K and delay A, and choose C
positive definite, then compute P so that AZ?@A - P= -C. Then
add jitter until EAQPAn - P 1is no longer positive definite. The
run of Table 1 is for the system of Fig, 2 with the jitter uniformly
distributed with mean A= 1, K = 10, r

=1, r, =2, The jitter model

1 2

was used in order to simulate a system with nominal sampling'time
A and symmetric errors. The holding time error then can be no bigger
than A. S0 2A = 8 is the maximum jitter allowed, The matrices ¢

varied over the family

2
For each ¢, a P (for A= 1, and no jitter) was computed. Then

the corresponding maximum jitter J (the supremum of the values of
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8 for which EAQPAn ~ P is negative definite) was computed.

02 J = max & for stability
0 Lo
.05 W52
.1 W31
.2 026 .
o) .18
1.0 13

Table 1,

Por this problem, the maximum jitter was computed as
about 0.42, Hence, the Liapunov derived method yields a satis-
factory estimate here., It is worth noting that the bounds improved
as 02 - 0, This suggests that there is a method of selecting a
'best' Liapunov function, but it is not yet understood.

The data concerned with the method involving compﬁtation
of the eigenvélues of ¥ is plotbed in Figs. 3 - 6. The gain is
plotted as the maximum % jitter (Jitter/ (2 average jitter) = J/2A)
for which the system is asymptotically stable (m.sq - and, of course
W.p.l.). The system is that of Fig. 2. There are several noteworthy
aspects of the data., Let «=r

=1, v, = 2, Kl = 6, TFor the de-

1 2

terministic problem where Ah = A, the system is unstable for holding

times larger than 1,42, 1In Fig. 3, for K= 6, A= 1, the stochastic

A

system is stable for Jitter = 8%3% or & = 1.66. Thus when the random

hold is in the interval [1.hk2, 1,66], the system (at that particular



hold) is operating in a deterministically unstable region, yet it is
stable,
It is interesting to observe that, with the jitter model
used, the maximum gain is increasingly insensitive to'the Jitter
(or, conversely, the maximum allowed jitter is increasingly sensitive
to the gain) as A increases. Apparently for large A=Ep, a
slight decrease in gain allows for a sizeable increase in the allow-
able jitter, However, it is surprising that (for A = 2) for only
a slight decrease in the gain for which the deterministic system
(Ah = A) 1is marginally stable, the random system is stable with
100% jitter. Furthermore, for large average holds (e.g., A= 2 in
Fig. 4), jitter may have the effect of stabilizing the system. This
is illustrated in Fig. 5, where the maximum modulus of the eigenvalues
of f are plotted vs. the absolute jitter ©, for EAh = A= 2,
K = 5;86, ry = 1, r2 = L4, Note that the maximum modulus is near unity
for &= 0. As © increases, the maximum modulus first decreases,
then increases and at d 1.85 £he maximum modulus is again unity.
Further elaboration of this point appears in Fig. 6, where
the maximum modulus of the eigenvalues of O are plotted vs. the
jitter ©. DNote that the jitter initially does reduce the elgenvalues —
and actually does slightly stabilize the (deterministically unstable)
system, Stabilization, via the use of 'white noise’ coefficients does

occur and is understood in certain very simple continuous time problems-
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see examples 1, 2, Chapter 2 of [5]. However, in the case here, the
reasons for the stabilization, however slight it is, are not, as yet,
satisfactorily understood, It is fairly clear that the jitter does
allow the random holding time to take smaller values than the nominal

a certain part of the time, and that the stabilizing effect of these
smaller holding +times outweighs the unstabilizing effect of the longer
holding times - until the jitter becomes too large, but a more detailed

explanation is not available,

h, TNonlinear Systems

Although the non-linear problem cannot be treated to the
same degree as the linear problem owing to the lack of sultable
Liapunov functions for the deterministic problem (giving necessary
as well as sufficient cénditions) with non-linear feedback, some
gquite useful results can still be easlly obtained. First, there is

‘an obvious generaligzation of the scalar case of Example 1 ag follows:
Example 2, The-system is

B 1, "y
1= *p E(l—e JEE ()

il

Gx + Fan(:xn)°
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Iet V(x) = |x]®, and 0= £(x )/x, =u, €u<w Then

EV(x ,) - V(x) = EX]GhX + Fan(xn)]S - 1x]°®

= EJ6x +F xux|® - [x]° = |8 (|6, + Fxu |® - 1),

Thus, as long as Kun £ Ku is less than the least X which causes
instability in Example 1, £here i1s asymptotic stability here., The

scalar nature of the problem made it easy to treat,

A Sampled Ture Problem, A generic.class of important

problems for which the stochastic Iiapunov method (although not the
direct method, as developed to date) yields some results is depicted

in the (Luré type problem) of Fig. 7. The system equations areJr

e
1i

[\
[

Ax - mf(cn) b2t N

(11)

q.
!

= ex o = o(t)

. o
where A is asymptotically stable, £(0) >0, 0 = [ f(a)da —» = as
o]

0 >t o and

|af(a)/dal = w. (12)

TNote that C,b, (as well as d to follow) are row vectors,
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Later, the estimate

g,
2
1] £ 5af(o;)(0y0,) + Eal(o,0)) (1)
o
1

following [10], Equation 5, will be used. Note that (13) is exact

if T is linear. A straightforward integration of (11) yields

X:n+l = Anxh * anf(cn)
(1)
Opi1 = T 7 P rnf(cn)
A = eAAn = a7Mr AAn)
0= ;) 8 = -e m
b, = CA_l(I-eAAh) (15)
AN
-1 -1 n
r =cA (AhI—A (I-re 7)Im.

For the rest of the development, the Liapunov function (16)
used in [10] for a discrete time Iuré problem will be used,
o
V(x,0) = x'Hx + q [ f(a)da, (16)
o
where g >0 and H 1is positive definite symmetric. Now, the co-
efficients (An’an’bn’rn) are still independent in n, and computing
with (16) gives
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EX’ o (x - V(x,0)

n+l’6n+l>

= er[Ar:IHAn_H]X + QE[ar'lﬁAn]xf(o‘) + E(a;lHan)fQ(o‘) + (17)

Gn+l

+ gE [ fla)da].
o

X, 0

. where x =X and ¢ = o is used. Using the estimate (13) in (17) gives

E, cV(Xn+1"’n+1) - V(x,0) = x'Cx + 2dxf(o) + pfg(cr) (18)
b4
= - Bape
C = E[AJHA - H+ 5dab/b ]
= _k -t
d = E[aﬁHAn §qrnbn 2bn] (19)
p = E[a'Ha_ + qr -+ Erg].
n on n 2n

Under the condition

C negative definite

o> dc“ld' (20)

the matrix
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is negative definite and, hence, by Lemmas 1 and 2, (18) and (20)
imply that Xn and Gn -0 W.p.l. Thus the system is asymptotically
stable w.p.1l. Also, by Lemmas 1 and 2, E(Xﬁxn+f2(0n)) - 0, The

proof that x, -0, 0, -0 w.p.l. as t -« 1is done exactly as for

t t

the scalar linear case. Note, again, that it is not really necessary

for the Ah to be identically distributed.

Example 3, 1In order to show that the condition (20) is
not vacuous,a simple example will be given. In general, following
the example of the linear case for Table 1, one may do some mild ex-
perimentation with H and ¢ +to improve the Liapunov function,

For the simple example, let G(s) = 1/(1+s), EA = A ~ .7, so that
e—A‘= 1/2, and let the jitter be distributed as in Fig. 2b with
5= A2 = .35.

Then p,d and C,g and H are scalars and the relation
(equality in (20)) p - d2C_l = 0 (with constraint C £ 0) may be
gsolved for p in terms of ¢ and H., The q and H maximizing the

allowable range of p (u is equivalent to the gain X) may then be

obtained, In the present case

¢ = J7T45H - 12749
-d = .245H - .307Mq - .25q
-p = -.255H + 1.4h5q - .782ug
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ér’ py (20)
¢ = -.7451{ + ,127uq < O (21a)
1008 + 25q2 - L8LqH + (l6OqH+155q2) + 57.6u2q2 < 0. (Elb?
Solving (21b) for u (in terms of H/q), and maximizing the y

over H/q yields that the system of Fig. 7 is asymptotically stable w.p.l.

(and also in the mean square sense) if
H< 785, (22)
with the maximizing p and H/q, C is negative,
Repeating the same procedure for no jitter gives asymptotic sta-

bility for

p < 1.31.
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